THEORETICAL ESTIMATION OF THE DYNAMIC APERTURE FOR A CHASMAN-GREEN LATTICE

If $v_{\rm X}$ is close enough to $v_{\rm X}$ = 1 per period, the Hamiltonian for the particle motion in a lattice with reflective symmetry can be written as

$$H = \sqrt{8} J_x [J_x A_{33} \cos Q_{33} + (3 J_x A_{11} - 6 J_y B_{11}) \cos Q_{11}]$$

where Q_{jm} = $j (\phi_x - \psi_x) + (j v_x - m) \theta$

 $\boldsymbol{\varphi}_{\boldsymbol{x}}$ is the particle phase,

 $\boldsymbol{\psi}_{\!_{\mathbf{X}}}$ is the lattice phase,

and θ is the angular coordinate along the orbit.

Using a reflective symmetry point as reference, the harmonic components are given by

$$A_{jm} = \sum_{k} \frac{S_{k}}{48\pi} \cos \left(j\psi_{x} - (j\nu_{x} - m)\theta\right)$$

$$B_{11} = \sum_{k} \frac{\overline{S}_{k}}{48\pi} \cos \left(\psi_{x} - (v_{x} - 1)\theta\right)$$

where
$$S_k = \left(\frac{\beta_x^{3/2}B''(x)\ell}{B\rho}\right)_k$$
,

$$\bar{S}_{k} = \left(\frac{\beta_{x}^{1/2} \beta_{y} B''(x) \ell}{B \rho}\right)_{k},$$

and $\frac{B''(x)\ell}{B\rho}$ are the sextupole strengths.

Since

$$H'(\theta) = -\sqrt{8} \left(v_x^{-1}\right) J_x^{1/2} \left[3 A_{33} J_x \sin Q_{33} + (3 J_x A_{11} - 6 J_y B_{11}) \sin Q_{11}\right]$$

and

$$J'(\theta) = \sqrt{8} J_x^{1/2} [3 A_{33}J_x \sin Q_{33} + (3 J_xA_{11} - 6 J_yB_{11}) \sin Q_{11}]$$

the function

$$(v_x - 1) J_x + H = C \text{ (a constant)}$$

 $(J_y \text{ is also a constant)}$

We define

$$\Delta = v_{X} - 1 ,$$

$$\sqrt{2J}$$

$$N_{x} = \sqrt{\frac{2J_{x}}{\varepsilon}}$$
,

$$N_y = \sqrt{\frac{4 J_y}{\epsilon}}$$
, (constant)

where ϵ is the natural emittance.

In these variables

$$\frac{\Delta \varepsilon \, N_x^2}{2} + \varepsilon^{3/2} N_x \, [N_x^2 \, A_{33} \cos Q_{33} + 3(N_x^2 \, A_{11} - N_y^2 B_{11}) \cos Q_{11}] = C$$

Define further

$$X_0 = \frac{A}{2\sqrt{\epsilon}A}$$
,

$$D = \frac{3 B_{11}}{A} ,$$

and
$$f(N_x) = N_x^3 + N_x^2 X_0 - N_x^2 N_y^2 D$$

where $A = 3 A_{11} + A_{33}$.

The constant of the motion is obtained from the initial conditions N_{xo} and $\phi_x = \psi_x = \theta = 0$. As Q_{33} , Q_{11} vary with the particle motion in the lattice N_x is determined by the constant C_{∞} . When $\cos Q_{33} = \cos Q_{11} = -1$, the particle has its maximum displacement in the opposite direction from the starting displacement. This displacement is obtained by finding the negative solution of the equation

$$f(N_x) = f(N_{xo}).$$

The functional form of f(N $_{\rm X})$ for X $_{\rm O}$ > 0 is shown in the sketch.

One has

$$N_{x1} = -\frac{X_0}{3}$$
 (1+B)

$$N_{x2} = -\frac{X_0}{3} (1-B)$$

$$N_{x3} = -\frac{X_0}{3} (1-2B)$$

$$B = \sqrt{1 + \frac{3N_y^2 D}{X_0^2}}$$

For an initial condition $N_{\rm XO}$, the displacement of the particle ranges between a and b as shown on the sketch. For $N_{\rm XO} > N_{\rm X3}$, b does not exist and the motion is unstable. The limit of stability occurs for $N_{\rm XO} = N_{\rm X3}$, and the displacement ranges from $N_{\rm X3}$ to $N_{\rm X1}$.

For D < 0, the stable region (N $_{\rm x3}$ - N $_{\rm x1}$) decreases as N $_{\rm y}^{\ 2}$ increases.

ت. <u>چن</u>یو

For

$$N_y^2 = N_{y \text{ max}}^2 = -\frac{X_0^2}{3D}$$
,

the stable region becomes 0. For $N_y > N_{y~max}$, there is no stability. (For D > 0, the stable region increases as N_y increases.)

Figure 1 shows the comparison between the predicted stability region and the results of tracking for the 7-GeV Advanced Photon Source CDR lattice. (1) The tracking results are obtained by searching for the limit of stability in Ny for a fixed value for Nx. (Negative Nx is understood to mean cos ϕ_{xo} = -1.)

The limits of the stable region for this lattice are caused by the chromaticity correcting sextupoles and the predominance of the integral resonance for $v_{\rm X}$ = 0.88 per period. The values used in predicting the results are

$$\epsilon = 8.08 \times 10^{-9} \text{ m}$$
 $A_{33} = -1.5200 \text{ m}^{-1/2}$
 $A_{11} = -1.3445 \text{ m}^{-1/2}$
 $A_{11} = 1.4385 \text{ m}^{-1/2}$

Reference

(1) 7-GeV Advanced Advanced Photon Source Conceptual Design Report ANL-87-15 (April 1987).

Figure 1

Dynamic aperture obtained by tracking (solid curve) and predicted by first-order resonance (dotted curve) with chromaticity-correcting sextupoles only.